マネージメント情報 2025年5月

Penn State Particle Separator (PSPS) 使い方まとめ~

Oku

パーティクルセパレーター: Penn State Particle Separator(PSPS)の使用方法を復習しました。備忘録としてまとめてみます。

● PSPS とは? ~ TMR の「見えない問題」を可視化するツール ~

Penn State Particle Separator(PSPS パーティクルセパレーター)は、TMR や粗飼料の粒子サイズ(peNDF)を定量的に評価するためのツールで、乳牛の栄養管理において重要な役割を果たします。

パーティクルセパレーターは、TMR や粗飼料の粒子サイズ(長さ)を4段階でふるい分けして、数値で把握できる道具です。これは「実際に牛が口にする飼料が、どのくらいの繊維構造を持っているか?」を見える化するための重要なツールです。測定は牛が飼槽から食べる前に、TMR が分離・選別される前の状態で行うのが理想的で、実際に給与された飼料で分析することが重要です。

● 「peNDF(物理的有効 NDF)」とは

牛は草を食べると、いったん胃に入れたあと、また口に戻してモグモグとかみ直す「反芻(はんすう)」という動きをします。この反芻をしっかりやってもらうためには、「**ある程度の長さ・かたさがある繊維(せんい)**」が必要です。

「peNDF」は、"かみごたえのある繊維"のこと

NDF というのは、飼料に含まれる繊維の量(Neutral Detergent Fiber)を意味します。ただし、NDF が多くても 粒が細かすぎると意味がありません。牛がちゃんとかんで、唾液(だえき)をたっぷり出すような繊維。それを 「物理的に効果がある繊維」 = peNDF と呼びます。

● なぜ粒子サイズ (peNDF) が重要なのか?

- TMR の粒子サイズは、反芻行動・唾液分泌・ルーメン pH の安定に影響します。
- ▶ 適切な粒子長がないと、選び食いやルーメンアシドーシスのリスクが高まります
- PSPS を使えば、TMR や粗飼料の粒子サイズを簡便・定量的に 評価できます。

『使うことでわかること』

- TMR が細かすぎるか?粗すぎるか?
- 長い繊維が適切に含まれているか?(反芻・乳脂率への影響)
- ミキサーの設定・混合状態に問題がないか?
- ▶ 牛が選別(選び食い)していないか?
- ▶ 実際に給与されている粒子サイズと設計通りの違いがないか?

『どんな時にパーティクルセパレーターを使うか?』

以下のような現場状況では、PSPS を用いた検証が特に有効です:

乳脂率の低下	TMR の物理的繊維不足や反芻不足を確認
牛の反芻時間が短い	TMR の粒子が細かすぎる可能性(4mm 未満の過多)
下痢・ルーメンアシドーシスを疑う状況	ルーメンマット形成不全、選び食いによるアシドーシス傾向
飼槽に粗飼料(長物)ばかりが残っている	牛の選び食いを疑い、TMR の粒度の分布を確認
新しい TMR ミキサーの導入後	適切な混合ができているかを粒子サイズで確認
設計値の NDF/peNDF との違い	栄養設計通りの粒子構成が実現されているかを検証
健康不良牛が散見される場合	飼料品質の再確認の一助に
粗飼料の切り替え時	粒子分布が設計に合っているかを評価
(特に新物、粗飼料の種類を変えた時など)	

パーティクルセパレーターの構造

ふるい	サイズ	主な内容物	役割
上段	19 mm 以上	長い繊維	反芻を促し、唾液でルーメンを緩衝
中段	8 ~ 19 mm	中程度の繊維	反芻補助・微生物分解しやすい
下段	4 ~ 8 mm	短い繊維・副産物	peNDF 評価の指標
最下層	4 mm 以下	細粒・穀物粉砕物	消化は速いが、peNDF 効果は低い

bottom pan

(PennState Extension HPより)

● 使用手順(現場マニュアル)

- 4 段のふるいを重ねる (上→下の順に 19mm, 8mm, 4mm, 最下層)
- 2. 約 1.4L または 500g (3 パイント) の TMR を上段にのせる
- 水平方向に5回振って90度回転 → これを8回(計40回)繰り 返す。滑りの良い台や板の上でやることが重要。
- 4. 各ふるいに残ったサンプルを**グラムで計量**し、割合(%)を計算 【**結果例**】

> 19 mm	35g (6.7%)
8-19 mm	230g (44.2%)
4-8 mm	85g (6.3%)
Bottom	170g (32.7%)

(PennState Extension HPより)

(PennState Extension HPより)

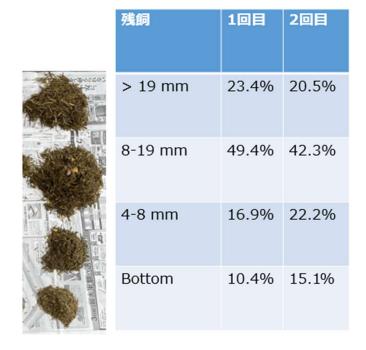
● TMR と粗飼料の粒子分布の目安(泌乳牛)

ふるい段	TMR	マイナー研の推奨	コーンサイレージ	ヘイレージ
上段(19mm 以上)	2~	5%以下	3~8%	10~20%
中段(8~19mm)	30~50%	50%以上	45~65%	45~75%
下段(4~8mm)	10~20%	10~20%	20~30%	30~40%
最下層(4mm 以下)	30~40%	25~30%	10%以下	10%以下

(Heinrichs et al. 2003) 2017年改訂

● 推奨繊維摂取量

乳量	総 NDF	飼料由来 NDF
36 kg以上	28~32%	21~27%
27∼36 kg	33~37%	25~32%
27 kg以下	38~42%	29~36%


総 NDF: 1.10~1.20%/体重

飼料 NDF: 0.75~1.10%/体重(粒子長が短い場合、トップが少ない場合は 0.85%以上が推奨)

● 実用的な応用

- ✓ 極端に長い粒子は選別の原因になり、極端に短い粒子は反芻時間を減少させ、唾液分泌やルーメン pH に悪影響を及ぼします。
- ✓ 長繊維が不足している場合、2~3 kg以上/日/頭の乾草を追加することで補える場合があります。
- ✓ 飼槽残飼の粒子サイズ変化を PSPS で測定することで、「選び食い」の有無を確認できます。
- ✓ ミキサーによる「撹拌過多」「撹拌不足」も、飼槽の各部で TMR を採取して比較することで評価可能です。

	給餌後	1回目	2回目
	> 19 mm	24.9%	21.6%
	8-19 mm	45.5%	44.8%
	4-8 mm	13.7%	19.2%
24188	Bottom	15.9%	14.3%

● まとめ

- ▶ パーティクルセパレーターは、牛が実際に食べる飼料の粒度を見える化するための便利なツールです。
- ▶ 「混ざっているか?」「適切な粒度か?」「反芻が促されているか?」を判断できます。
- ▶ 飼料分析の一環として、定期的な粒子サイズ測定をおすすめします。